IMPORTANT REMINDERS

- Updated contact details <u>Rpanggat@hartnell.edu</u>
- Faculty Webpage active

http://www.hartnell.edu/faculty/homepage.ht <u>ml</u>

> Take-home Assignment #1 due on 02/13/2012

Endocytosis

- Active transport wherein atoms, ions, molecules and certain pathogens are taken into the cell via vesicle formation
- Endocytosis vs. Exocytosis
- Three types Phagocytosis (WBC chasing bacteria), Pinocytosis (Cell Drinking) and Receptor-mediated Endocytosis

Skeleton-Muscular System BIO 42 Human Biology

Rosser Panggat, M.D.

Learning Objectives

- List the functions of the skeleto-muscular system
- Define the two main divisions of the skeletal system
- ✓ Identify major bones in the body
- ✓ Discuss the different types of joint and the movement provided by each
- ✓ Describe the appearance of the neuromuscular junction (NMJ)

Learning Objectives

- ✓ Describe the appearance of the neuromuscular junction (NMJ)
- ✓ Define the all-or-nothing basis of muscle
- ✓ Compare aerobic and anaerobic energy pathways

Skeletal System

• The skeletal system makes up approximately 12-15% of total body weight

Several key functions of the Skeleto-Muscular System

- Provide movement and locomotion
- Manipulate the environment
- Protect the organs in the thoracic and abdominopelvic cavities
- Help maintain homeostasis by generating internal heat

Several key functions of the Skeleto-Muscular System

- Maintain our upright posture and bipedal way of life
- Produce red blood cells (Hematopoesis)
- Stores and releases minerals, such as calcium and phosphorous, used in muscular contraction

Skeletal System

- At birth more than 300 bones
- Adult 206 bones

Axial vs. Appendicular skeleton

Axial Skeleton

- Central axis of the body
- Skeleton that protects the major organs (NS, RS & CVS)
- Consists of 80 bones
- Consist of the skull, facial bones, hyoid bone, ribs and vertebrae (SFHBRV)

Appendicular Skeleton

- Appendages
- Skeleton that makes body movement
- Consists of 126 bones
- Consists of the pectoral girdle, upper appendages (arms & hands), pelvic girdle and lower appendages (legs & feet)

Axial vs. Appendicular

Axial Skeleton

Appendicular Skeleton

Skull / Cranium

- Surround and protect the brain

Facial bones

Protect entrances of the respiratory, digestive and sensory system

Hyoid bone

- Is the only bone that is not attached to any other bone
- Is of forensic value
 because is can reveal
 death by strangulation
 (pressure applied to the throat)

Ribs / Thoracic cage

- Protects the lungs and the heart
- 12 pairs (7 pairs of true ribs, 3 pairs of false ribs and 2 floating ribs)

Axial Skele⁺ Spinal Column Vertebrae Vertebrae / Spinal Column 1. Cervical vertebrae (7) 2. Thoracic vertebrae (12)3. Lumbosacral vertebrae

(5)

Sternum / Breastbone

- Protect the anterior of the chest
- Point of interest in
 Cardiopulmonary
 Resuscitation (CPR)

Pectoral Girdle

- 2 pectoral girdles
- Clavicle / Collar bone
- Scapula/Chicken wings

Clavicle Fracture

Upper Appendages

- Humerus (strongest and longest bone in the upper appendicular skeleton)
- Ulna (medial side of the forearm, side of the pinky finger)
- Radius (lateral side of the forearm, side of the thumb)

Upper Appendages

- Carpals (wrist bones)
- Metacarpals (knuckles)
- Phalanges (finger bones)

Humeral Fracture

Pelvic Girdle

- 2 pelvic girdles
- Hipbone (Ilium, Ischium& pubic bone)
- Femur (longest and heaviest bone in the body)
- Patella / Kneecap

Pelvic Girdle

- Tibia
- Fibula
- Tarsals
- Metatarsals
- Phalanges

- Synarthrotic (immovable)
- Amphiarthrotic (semi movable)
- Diarthrotic (freely movable)

• Synarthrotic (immovable)

Amphiarthrotic (semi movable)

• Diarthrotic (freely movable)

Muscular System

- Muscle makes up approximately 40-45% of total body weight in males and 30-35% of total body weight
- Muscular tissues are contractile tissues
- Three types of muscles tissue (Skeletal, Smooth and Cardiac muscles)

Muscular System

- Skeletal Muscles

 (voluntary muscles and striated in appearance)
- Smooth Muscles

 (involuntary muscles and unstraited in appearance
- Cardiac Muscles

 (involuntary muscles and striated in appearance)

How does muscles contract

Microfilaments

 composed of actin and
 myosin (units called
 sarcomere) interact and
 causes muscle tissue to
 shorten, therefore
 produce movement

- Muscle contraction starts with a nerve impulse
- Junction between the nervous system ("neuro") and the muscular system

Steps in the transmission of impluse through the NMJ

- 1. Acetylcholine (Ach) is release from the end of the neuron into the junction
- 2. Ach binds to the receptors in the muscle cell wall in turns releases calcium inside the muscle cell
- 3. Ach is removed from the junction, hence ending its action
- 4. Contraction cycle begins

All-or-nothing basis of muscle contraction

 Nothing happens when the nerve stimuli is too weak to cause the release of calcium inside the muscle cell

Aerobic vs. Anaerobic

- Three types of muscle cells (Fast, Intermediate and Slow twitch)
- Determined by the breakdown of glycogen called glycolysis (storage form of glucose in the body) and oxygen supply of the cell (aerobic – more; anaerobic – less)

Aerobic vs. Anaerobic

Slow twitch muscles

- ✓ Red in appearance
- Large amount of blood supply (more oxygen)
- More mitochondria
 (powerhouse of the cell)
- Presence of myoglobin (oxygen carrying protein)
- Nonfatiguing / Aerobic cells

Fast twitch muscles

- ✓ White in appearance
- Less developed blood supply (less oxygen)
- ✓ Fewer mitochondria
- Easy fatiguing / Anaerobic cells

Aerobic vs. Anaerobic

Slow twitch muscles

✓ Long distance runners

Fast twitch muscles

✓ Sprinters

References

- Ireland, K.A. (2011). Visualizing Human Biology (3rd ed.). Danvers, MA: Wiley & Sons Inc
- Video clips retrieved from you tube